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(57) ABSTRACT

Aspects of the present invention concern a method and sys-
tem for scheduling a request for execution on multiple pro-
cessors. This scheduler divides processes from the request
into a set of domains. Instructions in the same domain are
capable of executing the instructions associated with the
request in a serial manner on a processor without conflicts. A
relative processor utilization for each domain in the set of the
domains is based upon a workload corresponding to an execu-
tion of the request. If there are processors available then the
present invention provisions a subset of available processors
to fulfill an aggregate processor utilization. The aggregate
processor utilization is created from a combination of the
relative processor utilization associated with each domain in
the set of domains. If processors are not needed then some
processors may be shut down. Shutting down processors in
accordance with the schedule saves energy without sacrific-
ing performing.
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PROCESSOR SCHEDULING METHOD AND
SYSTEM USING DOMAINS

CLAIM OF PRIORITY

The present application claims priority from and is a con-
tinuation of U.S. patent application Ser. No. 12/416,867, now
U.S. Pat. No. 8,578,386, entitled “PROCESSOR SCHEDUL -
ING METHOD AND SYSTEM USING DOMAINS,” filed
Apr. 1, 2009, the contents of which is incorporated herein in
be reference in its entirety.

INTRODUCTION

Possibilities for parallel computing have greatly increased
with the availability of multi-processor (MP) systems. MP
systems increase processing throughput by executing pro-
cesses on two or more processors. Depending on the MP
system design, these processes may run on several or several
hundred processors concurrently.

Managing concurrent execution on MP systems involves
safeguarding data from modification by multiple processes.
Indeterminate results, deadlocks and data corruption may
result if more than one process modifies or, in some cases,
even accesses the same dataset. Accordingly, it is important to
monitor and manage concurrent execution conditions on MP
systems to make sure data is processed properly.

Conventional solutions resolve concurrent execution con-
ditions using different types of locks. Fine-grained locking
manages concurrent execution on multiple processors by
dividing a task into many smaller pieces of code. Placing
locks around these small pieces of code keeps them from
being accessed or modified by other processes. Locks and
communication between processes can be used to increase
the number of processors used in parallel processing. In gen-
eral, fine-grained locking may work well as long as the over-
head associated with coordinating the fine-grained locks on
the MP system does not consume substantial resources.

Coarse-grained symmetric multi-processor (CSMP) oper-
ates differently from the fine-grained locking approach.
Instead of using locks, CSMP divides processes along func-
tional barriers into domains of processes having similar func-
tionality. Functional barriers represent a logical separation of
processes into different domains where these processes can
be run in parallel on different processors without conflict.
Generally, processes executing functions within the same
domain avoid conflicts over data and dependencies within a
given domain because the processes are run serially and notin
parallel on multiple processors.

Unfortunately, there are times that CSMP cannot
adequately schedule and use all the available processors. This
is not only an inefficient use of the available computing power
but also tends to use more energy than necessary.

BRIEF DESCRIPTION OF THE DRAWINGS

The features of the present invention and the manner of
attaining them, and the invention itself, will be best under-
stood by reference to the following detailed description of
implementations of the invention, taken in conjunction with
the accompanying drawings, wherein:

FIG. 1 is a schematic block diagram of an exemplary sys-
tem providing computer services according to a power opti-
mized schedule generated in accordance with aspects of the
present invention;
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FIG. 2 is a schematic block diagram of storage system that
may be advantageously used with one implementation of the
present invention;

FIG. 3 is a flowchart diagram providing the operations of a
power optimized scheduler in accordance with one imple-
mentation of the present invention; and

FIG. 4 is a flowchart diagram of the operations for gener-
ating a cost function for executing domains in accordance
with one implementation of the present invention.

DETAILED DESCRIPTION

Aspects of the present invention concern a method and
system for scheduling a request for execution on one or more
processors. This scheduling method and system divides pro-
cesses from the request into a set of domains. Instructions
from processes in the same domain execute the instructions
associated with the request in a serial manner on a processor
without conflicts. For each domain, the method and system
identifies a relative processor utilization based upon a work-
load that corresponds to an execution of the request. If there
are processors available then the present invention provisions
a subset of the available processors to fulfill an aggregate
processor utilization. This provisioning of processors fulfills
the aggregate processor utilization created from a combina-
tion of the relative processor utilization associated with each
domain. If some processors are not needed to fulfill the aggre-
gate processor utilization then these processors may be
scheduled to be shut down. Shutting down processors saves
energy without sacrificing performance as the processing
demand has already been met.

Aspects of the present invention provide a method for
scheduling one or more processes on a multiple computer
processors. Benefits provided by aspects of the present inven-
tion include, but are not limited to, one or more of the follow-
ing mentioned herein below.

In a course-grained symmetric multi-processor (CSMP)
system, aspects of the present invention optimize the sched-
uling of processes across the multiple domains. Processes are
separated into domains of functional groups using a prede-
termined set of functional barriers. These functional barriers
create a logical separation between different domains such
that processes in one domain may run in parallel with pro-
cesses from other domains.

In certain cases, processes associated with a selected
domain cannot be scheduled to execute in parallel with pro-
cesses from another domain. A cost function assigns the
selected domain a higher “cost” to reflect this added level of
scheduling complexity. This higher cost increases a base cost
associated with executing processes in the domain. A power
optimized scheduler in accordance with the present invention
will first schedule processes from the more costly domains
and thereafter schedule processes from the lower cost
domains. This cost-driven scheduling arrangement allows for
an optimal scheduling of tasks from an application in the
CSMP environment without the use of locks. Once the sched-
ule is set, the power optimized scheduler may also reduce
energy consumption by scheduling execution of the processes
in each domain on fewer processors. During this execution
time interval, processors not scheduled to execute processes
may be scheduled for a shutdown or, alternatively, at least
directed to operate at a reduced power level in order to reduce
heat and save energy.

Aspects of the present invention reduce energy costs with-
out compromising performance when executing requested
tasks. Scheduling done in accordance with aspects of the
present invention provides sufficient processing power to
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adequately perform the task in a given time interval. Tasks are
scheduled in advance along with the requisite amount of
processing power needed to run. Excess cores or processors
not required to execute the task are temporarily shutdown
during the given time interval. By carefully anticipating and
matching processor demand, aspects of the present invention
can meet processing requirements dynamically without sac-
rificing performance. This approach does not attempt to run
processors at slower speeds to save energy (i.e., extend bat-
tery life or lower power consumption) if that would result in
diminished computing performance characteristics.

FIG. 1 is a schematic block diagram of an exemplary sys-
tem 100 using a power optimized schedule 122 to schedule
execution of processes on one or more processors in accor-
dance with aspects of the present invention. System 100 in
FIG. 1 includes clients 102 and 104, storage system 106, a
power optimized scheduler 108 and scheduler datasets 110
used in generation of power optimized schedule 122.

In one implementation, exemplary system 100 provides
storage services to clients 102 and 104 using storage area
network (SAN), network addressable storage (NAS) or other
storage technologies processed on multiple processor accord-
ing to power optimized schedule 122. It is further contem-
plated that alternate implementations of the present invention
may use power optimized schedule 122 to deliver other types
of computer services on a multiprocessor (MP) platform. For
example, power optimized scheduler 108 and power opti-
mized schedule 122 may be applied to web server technolo-
gies using a MP system to deliver web pages and web services
to clients 102 and 104 over the Internet. It is also contem-
plated that many other general purpose applications can
implement aspects of the present invention for scheduling and
executing processes with reduced energy requirements.

In one implementation, the storage system 106 can be
file-level servers such as used in a network-attached storage
(NAS) environment, block-level storage servers such as used
in a storage area network (SAN) environment, or other stor-
age systems which are capable of providing both file-level
and block-level service. Further, although the storage system
106 is illustrated as a single unit in FIG. 1, it can also be
implemented in a distributed architecture. For example, each
storage server from storage system 106 can be implemented
with multiple distributed storage servers. It can also include a
physically separate network module (e.g., “N-module”) and
disk module (e.g., “D-module”) (not shown), which commu-
nicate with other storage servers over an external intercon-
nect.

In adistributed architecture implementation, the N-module
acts as a front-end of the storage server, exporting services to
clients; and the D-module acts as the back-end, managing and
implementing a parity declustered distribution of a RAID
(redundant array of independent disks) organization on the
underlying storage of the storage server. The N-module and
D-module can be contained in separate housings and com-
municate with each other via network connections. Thus, the
N-module and the D-module enable a storage server to be
physically separated into multiple modules that can be dis-
tributed across a network. In one implementation, storage
system 106 can include multiple N-modules and D-modules,
each of the N-modules corresponding to one or more D-mod-
ules, and each of the D-modules corresponding to one or more
N-modules.

Clients 102 and 104 may be computers or other computer-
like devices capable of accessing storage system 106 either
directly or indirectly over a network 114. In general, clients
102 and 104 may access storage system 106 over network 114
using wireless or wired connections supporting one or more
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point-to-point links, shared local area networks (LAN), wide
area networks (WAN) or other access technologies. These
clients 102 and 104 may be accessing data, applications, raw
storage or various combinations thereof stored on storage
system 106.

Storage system 106 includes one or more storage servers
represented as storage server 124 through storage server 126
and their corresponding storage devices 128 through 130 and
storage devices 132 through 134. In this example implemen-
tation, storage server 124 and storage server 126 are under the
control of operating system 136 and operating system 138
respectively. Each of storage server 124 and storage server
126 may use one or more processors as represented by pro-
cessors 118 and processors 120 respectively. In one example
MP system, processors 118 and processors 120 each have two
or more processors. It is contemplated that the processes
scheduled on the processors in these MP systems may also
include multiple core processor designs in addition to the use
of threads in addition to processes.

For example, storage server 124 may use a combination of
software and hardware to provide storage services including
the organization of information on storage devices 128
through 130, such as disks. Storage server 124 may be respon-
sive to an operating system 136 that includes a file system to
logically organize the information as a hierarchical or other
structure of directories and files on the disks. Each “on-disk”
file may be implemented as a set of disk blocks configured to
store information, such as text or raw binary data whereas the
directory may be implemented as a specially formatted file in
which information about other files and directories is stored.
Accordingly, operating system 136 may be a general purpose
operating system compatible with single-processor and mul-
tiple-processor (MP) configurations and may also include
storage operating system functionality used to deliver storage
and related services to one or more clients.

As used herein, the term storage operating system gener-
ally refers to the computer-executable code operable on a
storage system that manages data access and client access
requests and may implement file system semantics in certain
implementations. The Data ONTAP™ storage operating sys-
tem, available from Network Appliance, Inc. of Sunnyvale,
Calif., which implements a Write Anywhere File Layout
(WAFL™) file system, is an example of such a storage oper-
ating system implemented as a microkernel within an overall
protocol stack and associated disk storage. The storage oper-
ating system can also be implemented as an application pro-
gram operating within a general-purpose operating system,
such as UNIX® or Windows NT®, or as a general-purpose
operating system with configurable functionality, which is
configured for storage applications as described herein.

In one implementation, storage devices 128 through 130
and storage devices 132 through 134 may be implemented
using physical storage disks having one or more storage vol-
umes to define an overall logical arrangement of storage
space. Some implementations can serve a large number of
storage volumes that may exceed 150 discrete units, for
example. A storage volume may be “loaded” in storage server
124 by copying the logical organization of the volume’s files,
data and directories into memory of storage server 124. Once
a volume has been loaded in memory of a storage server, the
volume may be “mounted” by one or more users, applica-
tions, or devices as long as they are permitted to access its
contents and navigate its namespace. As used herein, a vol-
ume is said to be “in use” when it is loaded in a server’s
memory and at least one user or application has mounted the
volume and accessed its contents.
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As illustrated in FIG. 1, storage servers like storage server
124 may be configured to operate according to a client/server
model of information delivery thereby allowing multiple cli-
ents, such as client 102 and client 104, to access files simul-
taneously. In this model, client 102 may be a computer run-
ning an application, such as a file-system protocol, that
connects to storage server 124 over a network 114 with point-
to-point links, shared LAN, WAN, or VPN as implemented
over a public network such as the Internet. Communications
between storage server 124 and client 102 typically occurs as
packets are sent over network 114. Each client may request
the services of storage server 124 by issuing storage-system
protocol messages formatted in accordance with a conven-
tional storage-system protocol, such as the Common Internet
File System (CIFS) or Network File System (NFS) protocol.

In operation, a client 104 makes a request 138 to be fulfilled
by one or more storage servers 124 through 126. Client 104
may be a personal computer as well as any computing devices
capable of making a request and receiving data for process-
ing. For example, request 138 may be a request to either read
data from or write data to storage server 124. Operating
system 136 may implement coarse-grained symmetric mul-
tiprocessing (CSMP) and scheduling in accordance with
power optimized schedule 122 to execute processes associ-
ated with request 138 on one or more processors using a
reduced amount of power and heat.

To reduce energy consumption and heat, power optimized
scheduler 108 attempts scheduling processes on a reduced
number of processors. Power optimized scheduler 108
divides processes to be executed under operating system 136
into a set of domains according to their functionality and tasks
they perform. General domain database 112 has information
useful in organizing processes and the functions they perform
into one or more predetermined domain categories. Based
upon this division, processes in the different domains may be
scheduled to execute in parallel on multiple processors if they
do not share the same data. However, processes within each
domain that share data and data structures are limited to
serialized execution on a single processor to avoid data con-
tention or corruption.

Power optimized scheduler 108 schedules processes
according to their assigned domain allowing for MP parallel
execution without the overhead associated with explicit
locks. For example, storage server 124 and operating system
136 may implement CSMP using the following set of
domains: network (N), RAID (R), storage (S), filesystem (F),
idle (I), and exempt (K). As implied by their names, the
network domain includes processes related to performing
network specific functions. RAID domain includes processes
dealing with implementing the RAID functions and different
levels of RAID (e.g, RAID-0 through RAID-5). Storage
domain includes processes directly related to operating the
storage devices, such as disks. Filesystem is a domain that
contains filesystem related functions as well as a number of
other functions not readily assigned to the other domains. The
idle domain is that domain where the processor executes an
idle function awaiting completion of some input-output or
other event. Exempt domain includes those processes inher-
ently MP safe because they only operate on their input data
and have no global sharing of state and data. For example,
exempt processes may perform compression, decompression,
or RAID XOR computations without sharing data. Aside
from the idle and exempt domains, power optimized sched-
uler 108 of the present invention may serialize execution of
processes within a domain allowing only one process in each
domain to execute on one processor. In comparison, pro-
cesses in different domains generally have different function-

10

15

20

25

30

35

40

45

50

55

60

65

6

ality and do not operate on the same data thereby allowing
them to execute in parallel without conflict.

Power optimized scheduler 108 categorizes processes into
each domain as necessary to fulfill the client request 138.
Separating processes into the proper domains enables power
optimized scheduler 108 to facilitate safe execution of these
processes in MP environment without locks or other addi-
tional exclusionary mechanisms used in fine grained symmet-
ric multiprocessing (SMP). As described later herein, there
may occasionally be some tasks in different domains that still
cannot be executed in parallel. Domain combinations not
allowed to execute processes in parallel are entered in a
domain exclusion matrix 114 in accordance with aspects of
the present invention. For example, power optimized sched-
uler 108 may serialize execution between two different
domains if there is a probability that processes in these two
different domains may access the same data.

Power optimized scheduler 108 also functions to deter-
mine an optimal use of processors in storage system 106
provided a given workload of instructions. In accordance with
aspects of the present invention, the power optimized sched-
uler 108 schedules execution of tasks on the fewest number of
processors. Packing the tasks on fewer processors is not only
more efficient but can also lead to reduced overall power
consumption requirements. For example, scheduling per-
formed in accordance with the present invention makes it
possible to plan for the temporary shutdown of unused pro-
cessors or cores in advance since they will not be used to
execute tasks in a given time interval.

Power optimized scheduler 108 may actually shutdown
certain processors in storage system 106 to save energy and
reduce heat output. Executing tasks on fewer processors fur-
ther increases performance as the overhead in sharing among
fewer processors is reduced and cache affinity improved. For
example, there is an increased likelihood that the data already
stored in cache will be reused by another processor when
fewer processors are running and they share a common cache.
As the workload changes, aspects of the present invention
may reevaluate the processor utilization and then place pre-
viously shutdown or unused processors back online. For
example, power optimized scheduler 108 may bring online
any previously shutdown processors to meet an increased
processor utilization demand.

Aspects of the present invention may also be advantageous
in a virtualized computational environment using MP and
virtual machines. Before a processor is shut down, some
implementations may instead assign unused processor capac-
ity from one virtual machine in an idle state to another virtual
machine in need of additional computational power. Virtual-
ized computing allows implementations of the present inven-
tion an additional option of distributing computing capacity
to other virtual machines before actually taking processors
offline and shutting them down.

FIG. 2 is a schematic block diagram of storage server 124
that may be advantageously used with one implementation of
the present invention. Storage server 124 includes a memory
202, a multi-port storage adapter 204, a processor complex
206, a network adapter 208, an system memory 210 and I[/O
ports 212 capable of communicating over interconnect 214. It
is contemplated that aspects of the invention described herein
may apply to any type of special-purpose computer (e.g., file
serving appliance) or general-purpose computer, including a
standalone computer, embodied as a storage system. To that
end, storage server 124 may be broadly, and alternatively,
referred to as a component of the storage system 106. More-
over, various aspects of the invention can be adapted to a
variety of storage system architectures including, but not
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limited to, a network-attached storage (NAS) environment, a
storage area network (SAN) and disk assembly directly-at-
tached to a client/host computer. The term “storage system”
should, therefore, be taken broadly to include such arrange-
ments and combinations thereof.

In the illustrative implementation in FIG. 2, memory 202
includes storage locations that are addressable by the proces-
sor and adapters for storing software program code and data.
For example, memory 202 may include a form of random
access memory (RAM) that is generally cleared by a power
cycle or other reboot operation and classified as “volatile”
memory. Processor complex 206 and various adapters may, in
turn, comprise processing elements and logic circuitry con-
figured to execute the software code and manipulate the data
stored in the memory 202.

Memory 202 includes storage operating system 216 por-
tions of which is typically resident in memory and executed
by the processing elements. Storage operating system 216
functionally organizes storage server 124 by, inter alia, invok-
ing storage operations in support of a storage service imple-
mented by storage server 124. As previously described, the
term “storage operating system” as used herein with respect
to a storage server generally refers to the computer-execut-
able code operable on a storage system that implements file
system semantics (such as the above-referenced WAFL™)
and manages data access. In this sense, Data ONTAP™ soft-
ware is an example of such a storage operating system imple-
mented as a microkernel. The storage operating system can
also be implemented as an application program operating
over a general-purpose operating system, such as UNIX® or
Windows NT®, or as a general-purpose operating system
with configurable functionality, which is configured for stor-
age applications as described herein.

It is also contemplated that storage operating system 216
may execute within a run-time environment 218 that may
include a general purpose operating system or virtualization
environments that help improve utilization and efficient allo-
cation ofhardware and computing resources on storage server
124. It will be apparent to those skilled in the art that other
processing and memory areas, including various computer
readable media, may be used for storing and executing pro-
gram instructions pertaining to the inventive techniques
described herein.

Power optimized scheduler 217 includes functions and
datasets necessary for implementing aspects of the present
invention. This power optimized scheduler 217 works within
the MP environment to optimally reduce the number of pro-
cessors required to execute various computational functions
within the MP environment. As the workload requirements
change over time, power optimized scheduler 217 dynami-
cally shutdowns certain unused processors in processor com-
plex 206 to save additional energy and reduce heat output.
Optimized advanced scheduling of tasks on fewer processors
allows the unscheduled processors to be shutdown without
impacting performance.

Instead of actually shutting down processors, it may also
possible for power optimized scheduler 217 to assign unused
processor capacity to other virtual machines in a virtualized
computing environment. For example, a processor from pro-
cessor complex 206 on a first storage server may be shared
with a virtual machine running on a second storage server. In
the event there is no expected or actual demand from other
virtual machines then the unused processors in processor
complex 206 would be shutdown in accordance with imple-
mentations of the present invention.

It is also contemplated that power optimized scheduler 217
may also add necessary processors to the schedule as needed
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to accommodate an increased computing demand. Coarse-
grained symmetric multiprocessor (CSMP) component 219
receives the schedule for executing certain processes within
one or several domains from power optimized scheduler 217.
The schedule may cause one or more processors from pro-
cessor complex 206 to go online and ready for execution.
While they are illustrated as discrete elements, it is also con-
templated that power optimized scheduler 217, CSMP com-
ponent 219 and run-time environment 218 could be integrated
into storage operating system 216 as appropriate to the par-
ticular implementation.

Multi-port storage adapter 204 cooperates with the storage
operating system 216 and optionally run-time environment
218 executing on storage server 124 to access information
requested by the one or more clients. Resulting information
may be stored on or retrieved from the storage devices that are
attached to the storage server 124 or other nodes of a storage
system via the multi-port storage adapter 204. The multi-port
storage adapter 204 includes input/output (I/O) interface cir-
cuitry that couples to the storage devices over an 1/O inter-
connect arrangement, such as a conventional high-perfor-
mance, Fibre Channel serial link topology. One or more
interconnects on the multi-port storage adapter 204 may be
used to provide higher throughput and/or reliability. The
information is retrieved by the multi-port storage adapter 204
and, if necessary, processed by the processor complex 206 or
processors on the multi-port storage adapter 204 (not shown)
prior to being forwarded over interconnect 214 to the network
adapter 208, where the information is formatted into one or
more packets and returned to a requesting client.

In one implementation, storage devices are arranged into a
plurality of volumes, each having a file system associated
therewith. These storage devices may include conventional
magnetic tapes or disks, optical disks such as CD-ROM,
DVD, magneto-optical (MO) storage or any other type of
non-volatile storage devices suitable for storing large quan-
tities of data.

Each volume may include one or more disks. Implemen-
tations of the present invention can configure the physical
disks of storage devices into RAID groups so that some disks
store striped data and at least one disk stores separate parity
for the data, in accordance with a preferred RAID 4 configu-
ration. However, other configurations (e.g. RAID 5 having
distributed parity across stripes, RAID 0 mirroring and oth-
ers) are also contemplated. In a typical implementation, a
volume may be implemented as multiple RAID groups.

Processor complex 206 represents the one or more compu-
tational units available in storage server 124 that contribute to
the overall MP environment. Itis contemplated that processor
complex 206 may be a physical aggregation of multiple indi-
vidual processors that each individually process and transfer
data over interconnect 214. Alternate implementations of pro-
cessor complex 206 may be a single processor having mul-
tiple on-chip cores that may partition and share certain
resources also on the processor die such as [.1/L.2 cache. For
at least these reasons, aspects of the present invention may be
described as using a processor or multiple processors for
convenience however it is contemplated that the term “pro-
cessor” could also be applied to designs utilizing one core or
multiple cores found on a single chip or die. Likewise, the
term process is used to describe the act of executing a set of
related instructions on one or several processors but it is also
contemplated that alternate implementations could be per-
formed using single or multiple threads executing the same or
similar instructions on one or several processors each capable
of multi-threaded execution.
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The network adapter 208 comprises the mechanical, elec-
trical and signaling circuitry needed to connect the storage
server 124 to clients 102 and 104 over network 115, which
may include a point-to-point connection or a shared medium,
such as a LAN.

In one implementation, the system memory 210 provides
fault-tolerant backup of data, enabling the integrity of host
transactions to survive a service interruption based upon a
power failure, or other fault. The size of the system memory
210is variable, although it is typically sized sufficiently to log
a certain time-based chunk of transactions (for example, sev-
eral seconds worth). In one implementation used in a storage
system, system memory 210 is non-volatile random-access
memory (NVRAM) capable of storing client requests corre-
sponding to discrete client messages requesting file transac-
tions such as “WRITE,” “CREATE,” “OPEN,” and the like.
Further, these entries may be logged in the NVRAM, e.g.,
according to the particular order they are completed. The use
of'the NVRAM for system backup and crash recovery opera-
tions is generally described in commonly assigned applica-
tion Ser. No. 09/898,894, entitled “System and Method for
Parallelized Replay of an NVRAM Log in a Storage Appli-
ance” by Steven S. Watanabe et al. assigned to the assignee of
the present invention and expressly incorporated herein by
reference.

1/O ports 212 may be connected to a variety of display
devices, keyboards, mouse and other devices to interact with
storage server 124 and the processes being run thereupon. A
CD-ROM, DVD or other non-volatile storage device along
with a respective CD-ROM, DVD or other storage media can
also be connected via I/O ports 212 to storage server 124.
These storage media may contain one or more implementa-
tions of the present invention tangibly embodied on the stor-
age media with instructions capable of being executed on the
processor complex 206.

Referring to FIG. 3, a flowchart diagram provides the
operations of power optimized scheduler 217 (hereinafter
“scheduler”) in accordance with one implementation of the
present invention. Initially, the scheduler divides the pro-
cesses from a request into a set of domains capable of execut-
ing each process associated with the request in a serial manner
onaprocessor (302). In one implementation, the request from
a client may be to read from or write data to a storage server.

Processes for this task may be divided into one or more
domains described as: network, filesystem, RAID, storage,
idle and exempt. Alternate implementation may use other
domains separated by different functional boundaries
depending on the overall system purpose and the underlying
processes used to facilitate the request. For example, one
implementation may use 5 different domains while other
implementations may use as many as 10 or more domains.
Alternate implementation of the present invention may use
fewer than 5 domains to describe the functional boundaries of
the system. In general, these different domains may be rep-
resented by an array D[N] where N represents the number of
CSMP domains available to the scheduler.

Once the processes have been divided according to their
respective domains, the scheduler identifies a relative proces-
sor utilization for each of the domains based upon a workload
while executing the request. (304) The relative processor
utilization reflects that certain domains may or may not use as
much processor capacity as others when fulfilling a particular
request. Factors for determining relative processor utilization
may include whether a domain is MP safe and if so the
number of processes within the domain capable of executing
in parallel. In accordance with the present invention, domains
should be given greater or lesser amount of resources from the
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scheduler according to their utilization. In one implementa-
tion, the scheduler turns on all the available processors in an
MP system for a predetermined period of time and then mea-
sures how the workload from the processes is distributed over
the domains in D[N]. For example, the scheduler may turn on
all 8 cores in an 8-way MP system for a predetermined time
interval of one-second (i.e., 1 sec.) and then measure the
relative processor utilization from each of the domains in
DI[N].

If the measured use from one domain during this time
interval does not exceed the computational capacity of a
single processor then the relative processor utilization asso-
ciated with the domain is equal or less than 100%. For
example, the network domain may be assigned 35% relative
processor utilization if the network domain required only
35% processor relative processor utilization during the time
interval. However, a storage domain might be assigned 250%
relative processor utilization if it required the processing
capability of 214 processors during the same time interval.

The scheduler may determine relative processor utilization
by analyzing entries in an execution log file. MP-safe
domains may be assigned more than 100% processor capacity
when they can execute processes within the MP-safe domain
in parallel on multiple processors. For example, a domain
capable of using the maximum number of processors in an
8-way MP system may be assigned a relative processor utili-
zation of as much as 800%. Other domains that are not con-
sidered MP safe cannot execute their tasks and instructions in
parallel and therefore limited to no more than 100% processor
capacity or a single processor at a time. For example, the
filesystem domain may be one domain not considered MP
safe since multiple processes may share data in the filesystem
domain. An array M[N] stores the maximum processor capac-
ity that each domain is capable of potentially using in a given
MP system.

In one implementation, the relative processor utilization
determination reflects the execution frequency of certain
domains while responding to a request. For example, the
execution log associated with performing a “cache read”
request may indicate the load mixture: network 50%, filesys-
tem 60%, RAID 0% and storage 0%. This mixture reflects the
fact that a “cache read” would come directly from cache and
therefore not need execute RAID instructions or storage
instructions. Network 50% and filesystems 50% indicates
that both the network domain and filesystem domain activity
during the measured time interval each occupied approxi-
mately 50% of the capacity of a single processor. An array
U[N] may be used to represent the relative processor utiliza-
tions distributed over each of N domains provided a particular
workload.

Next, the scheduler provisions a subset of available pro-
cessors according to aggregate processor utilization and shuts
down the remaining processors not in the subset to reduce
power consumption. (306) Implementations of the present
invention combines the utilization from each domain into an
aggregate utilization to determine an overall requirement for
resources. For example, a relative processor utilization of
network 50%, filesystem 250%, RAID 80%, storage 60% and
exempt 80% may result in an aggregate utilization of 50%+
250%+80%+60%+80% or 520%. This aggregate utilization
determines that a subset of 7 processors out of a total of 8
processors should be powered on and 1 processor shutdown.
It is contemplated that the scheduler would need only 6 pro-
cessors to meet the aggregate processor utilization demand
and the remaining 2 processors would either sit idle or tem-
porarily be shutdown. The additional 7th processor is
included in the subset with the expectation and remains idle
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but available just in case there is an sudden increase in the
demand. In general, Ksub represents a subset of processors
from K processors available in a system such that Ksub is less
than or equal to K. If an aggregate processor utilization is
defined as AU then the projected Ksub in one implementation
may be determined as follows:

K., ,=round_up(AU)+1
Kousdomm=K-Kap
Where:

AU is Aggregate relative processor utilization across all
domains.

round_up(x) is a function that rounds up to the nearest
integer value.

K represents all the available processors in a system.
K., 1s a subset of processors turned on and always equal
to or less than K.

Kpuiown 18 @ set of processors that are instructed to be
shutdown.

+1 accommodates an additional processor in case of an
unexpected surge in processing requirements during a time
interval.

The scheduler assigns a cost for relative processor utiliza-
tion in each domain that increases when one domain cannot
execute in conjunction with another domain. (308) Initially,
the base cost assigned to each domain is generally higher for
domains with a higher utilization. For example, a network
domain having a 90% utilization would be given a higher base
cost compared to storage domain having a 80% utilization
since the former demands more processor capacity during
execution. Base costs may be increased when it is determined
that a selected domain cannot execute in parallel with another
process from the same or different domain. This increased
cost accommodates for the added limitations in scheduling
these processes. For example, this might occur when two
domains share data and processes in each domain may
modify this data. Accordingly, the increased cost takes in
account the added overhead associated with ensuring the
processes in the respective domains can be scheduled and
produce reliable results. The cost function C[x] assigns a cost
to each domain for purposes of scheduling and execution in
accordance with implementations of the present invention.
One cost function C[x] is described in further detail later
herein in accordance with aspects of the present invention.

In one implementation of the present invention, an exclu-
sionary matrix E[x][y] indicates whether one domain should
not be scheduled for execution in conjunction with another
domain. The overall cost of a selected domain takes in
account the number of entries in the exclusionary matrix
E[x][y] that disallows scheduling of the selected domain with
all other domains. Below is an example exclusionary matrix
in accordance with one implementation using a combination
of the following four domains: filesystem (F), exempt (E),
RAID (R) and storage (S).

FERS
F 1000
E 00 0 0=ExD]
ROO 10
S 0000
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Where:

E[x][y] is an exclusion matrix for one implementation
indicating allowable parallel execution of processes in the
identified domains x and y.

An entry of ‘1’ indicates that processes from the two
domains should not be executed in parallel on the same or
different processors.

An entry of ‘0’ indicates that processes from the two
domains may be executed in parallel on the same or different
processors.

F represents the filesystem domain which is not MP safe
and therefore cannot run in parallel with other filesystem or
storage domain processes.

E represents the exempt domain and may be scheduled and
executed in parallel with processes from any another other
domain including the exempt domain.

R represents the RAID domain and may be scheduled and
executed in parallel with processes from any another other
domain other than the RAID domain itself.

S is the storage domain and may be scheduled and executed
in parallel with processes from any other domain except the
filesystem domain as these two domains may share the same
data.

The scheduler references the exclusionary matrix E[x][y]
to determine the overall added costs to be added to a selected
domain ‘x’. Each entry in the exclusionary matrix E[x][y] for
a selected domain may result in an increased ‘cost’ due to a
conflict with one or more other domains. For example, the
filesystem domain (F) (e.g. x=F) in the exclusionary matrix
conflicts with 2 domains: the filesystem domain (F) and the
storage domain. Notwithstanding other factors, the filesystem
domain (F) in this example is attributed a higher ‘cost’ than
the exempt domain (E) since the exempt domain has no
entries in the exclusionary matrix E[x][y] indicating conflict.

The scheduler then uses the ‘cost’ associated with each
domain to prioritize and schedule execution of the processes
on the one or more processors. In one implementation, the
scheduler begins by scheduling processes from a more costly
domain to one or more processors. (308) The process from the
more costly domain is given priority over the processes from
other domains as it may require more processor resources and
may limit the degree of parallel processing. Executing the
more costly processes first allows the remaining less costly
processes to be scheduled more freely and with a reduced
likelihood of conflict. For example, processes from a filesys-
tem domain may have the highest ‘cost” and therefore will be
scheduled first for execution. Even in an MP system, instruc-
tions from the filesystem domain in this example may only
execute on a single processors since the filesystem domain
cannot run in parallel with itself.

Next, the scheduler schedules processes from each of the
decreasingly lower cost domains to one or more processors
for subsequent execution. (312) The scheduler proceeds to
schedule processes in the decreasingly lower cost domains
while maintaining the ratio of relative processor utilization
from the domains as indicated in U[N]. For example, the
execution of processes from the network domain at 50%
utilization needs to be balanced with a execution of processes
from the storage domain set to 60%.

Given multiple processes in each domain, one implemen-
tation of the present invention may schedule a portion of these
processes from each domain in a round-robin format. For
example, the scheduler may schedule 1% of the processes in
each of the domains starting with the highest cost domain on
down to the lowest cost domain. This is repeated until the
processes in each of the domains have been scheduled and
awaiting execution. Alternatively, it is also be possible for the
scheduler to schedule a larger percentage from each domain
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and is not limited to scheduling only 1% of the processes in
each domain in a round-robin format. Indeed, it is contem-
plated that yet another implementation of the present inven-
tion may attempt to schedule all the processes in the higher
cost domains before attempting to even schedule those pro-
cesses in the lower cost domain.

The, scheduler continues to schedule processes from the
more costly domain (310) and lower cost domains in decreas-
ing order (312) until there are no more processes from the
request that need scheduling. (314—No) Once all processes
from the domains are scheduled, aspects of the present inven-
tion indicate that the schedule is complete and processes
should be executed on one or more processors. (316) As a
further refinement, the scheduler may attempt to sort as many
processes and/or instructions as possible from a domain onto
a single processor after an initial schedule is established. This
will increase the cache affinity of instructions on these pro-
cessors as there may be shared data in cache between instruc-
tions of the same domain. For example, instructions from
domains S E E E at time T1 may be scheduled to execute on
processors P1, P2, P3 and P4. At time T2 an additional set of
instruction from domains E E E S may initially be scheduled.
This further refinement would further modify the schedule at
time T2 to schedule the instructions on processors P1, P2, P3
and P4 from domains S E E E to keep the domains on the same
processors. Keeping certain domains executing instructions
on the same processor increases cache affinity or the likeli-
hood of cache hits on each respective processor.

If there are remaining processes (318), the scheduler may
also need to evaluate whether the workload has changed. For
example, the scheduler may determine that the workload
mixture needs to be recalculated (318—Yes) as some period
of time has elapsed or there is some other trigger requiring
that the workload mixture be reconsidered. Alternatively, if
sufficient time has not passed or for other reasons then the
workload mixture has not changed and the existing workload
mixture is not modified. (318—No) The scheduling process
continues until all processes have been scheduled on one or
more processors in the MP system.

FIG. 4 is a flowchart diagram of the operations for calcu-
lating the ‘cost’ associated with a domain when prioritizing
and scheduling associated processes for execution. As previ-
ously described, a base cost is assigned to each domain and
then increased commensurate with the likelihood that execu-
tion of processes in the selected domain may conflict with
processes from other domains. Aspects of the invention use
the results of this cost function to optimally schedule and
execute processes from different domains on a reduced num-
ber of processors. Processors not scheduled to execute a pro-
cess are shut down to reduce energy costs and heat output in
accordance with aspects of the present invention.

As a preliminary step, the power optimized scheduler
receives a request and corresponding set of processes divided
into one or more domains according to their function. (402) In
this context, the domain is a grouping of processes with a
related functionality and each domain is generally assigned to
at least one processor. If processes in one domain may poten-
tially share data with and instructions within the same domain
then the tasks and instructions are executed in serial manner.
Serializing execution of processes that share data within each
domain prevents two processes from operating on the same
data simultaneously. However, multiple processes from a
single domain may be executed in parallel in a MP environ-
ment if the domain is deemed MP safe. For example, in one
implementation processes from the MP safe storage domain
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(S) can be executed in parallel on multiple processors and
need not be limited to serialized execution on a single pro-
Ccessor.

The scheduler assigns an initial base cost to execute each
domain corresponding to a relative processor utilization in
each domain, (404) As previously described, a higher cost is
assigned to the domains that have a higher relative processor
utilization requirement. For example, a network domain hav-
ing a 90% relative processor utilization will have a higher cost
than a storage domain having only a 80% relative processor
utilization.

Next, the scheduler references the exclusion matrix to
determine if processes from a selected domain are restricted
from executing with processes from another domain. (406) In
some cases, there are no conflicts between processes of the
selected domain and any other domain in the exclusion
matrix. (406—No) For example, the exempt domain in the
previously described exclusion matrix does not share data or
have any other conflict with another domain and therefore can
run in parallel with other domains on any available processor.
Accordingly, if there is no conflict then the scheduler submits
the base cost of the selected domain without added costs for
scheduling processes around conflicts with processes from
other domains. (412)

Alternatively, if there are conflicts between processes in the
selected domain and any other domains (406—Yes) then
there is an increase in the base cost for the selected domain.
The cost function increases the cost associated with schedul-
ing execution of processes in the selected domain with the
other domains. (410) For example, the filesystem domain in
the previously described exclusion matrix may have
increased costs due to conflicts with the storage domain and
the filesystem domain itself. In one implementation, pro-
cesses in the filesystem domain cannot execute in parallel on
multiple processors and cannot run at the same time as pro-
cesses classified in the storage domain.

The cost assigned to a selected domain may be reduced
depending on whether processes from the selected domain
may run on two or more processors in parallel. (414—Yes) In
accordance with the present invention, the ability to execute
onmultiple processors in parallel decreases both the base cost
and increased costs in the cost function of the present inven-
tion. For example, a greater the degree of parallel execution
decreases the overall cost to execute as the scheduler has more
flexibility in scheduling the process for execution on a wider
range of processors and during more time intervals. Accord-
ingly, the cost function decreases the base cost and other cost
adjustments for the selected domain in accordance with the
amount of parallel processing in the selected domain. (416)
For example, processes classified in the exempt domain may
run on multiple processors in parallel and therefore will have
a correspondingly reduced overall cost due to this factor.

If the selected domain cannot run on multiple processors
(414—No) then the final cost includes the base cost and
increased costs without reduction. (418) The cost for sched-
uling and executing these processes does not change as the
processes in this domain are serialized and cannot run on
multiple processors. For example, processes associated with
the filesystem domain in the example exclusion matrix do not
have a reduced cost as they may only run on a single proces-
sor.

In one implementation, the cost function used for schedul-
ing instructions in accordance with implementations of the
present invention may be represented by the formula appear-
ing below.

Cl]=Ups)/MPsJ+Z, (U] U< E[x][i]Y (M [x]x
M[iD]
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where:

U] ]: is the relative processor utilization matrix for each
domain

M ]: is the maximum processor utilization matrix for each
domain

E[ ]: is the two-dimensional exclusion matrix for executing
processes in parallel from a pair of domains

CJ[ ]: is the overall ‘cost’ function taking in account base
cost, increased costs and reduction in cost due to executing
processes from a selected domain on multiple processors in
parallel

x: is an index for the selected domain of interest

N:isthe number of domains used in the scheduling method

In the above example, it is useful to highlight a few of the
many factors that influence the cost function used for a given
domain. It can be appreciated that the overall cost function
C[x] in this example depends on a two different terms: (1) a
processor utilization term that depends on U[x] N for a given
domain x and (2) a conflict term that depends on entries in an
exclusion matrix E[ ][ ]. For example, a selected domain x
having a very high processor utilization U[x] will have a
correspondingly higher base cost C[x]. This base cost will not
be increased if there are no entries in the exclusion matrix E[
][ ] indicating a conflict with one or more of the other domains
1 through N. However, if there is at least one conflict with
another domain from 1 through N then the cost function C[x]
for the domain x will increase in proportion to the utilization
U[x] for the selected domain x and the utilization U[i] for the
domain in conflict. With respect to parallel processing, it can
also be appreciated that the cost function C[x] for a domain x
decreases if the maximum processor utilization M[ ] for the
domain x or i can be scheduled and executed on multiple
processors in parallel.

While examples and implementations have been
described, they should not serve to limit any aspect of the
present invention. Accordingly, implementations of the
invention can be implemented in digital electronic circuitry,
or in computer hardware, firmware, software, or in combina-
tions of them. Apparatus of the invention can be implemented
in a computer program product tangibly embodied in a
machine-readable storage device for execution by a program-
mable processor; and method steps of the invention can be
performed by a programmable processor executing a pro-
gram of instructions to perform functions of the invention by
operating on input data and generating output. The invention
can be implemented advantageously in one or more computer
programs that are executable on a programmable system
including at least one programmable processor coupled to
receive data and instructions from, and to transmit data and
instructions to, a data storage system, at least one input
device, and at least one output device. Each computer pro-
gram can be implemented in a high-level procedural or
object-oriented programming language, or in assembly or
machine language if desired; and in any case, the language
can be a compiled or interpreted language.

Suitable processors include, by way of example, both gen-
eral and special purpose microprocessors. Generally, a pro-
cessor will receive instructions and data from a read-only
memory and/or a random access memory. Multiprocessor or
MP may include multiple individual processors coupled
together communicating over an off-chip high-speed bus as
well as more tightly coupled arrangements. For example, a
multicore processor may also be considered MP as it is able to
handle multiple independent instruction streams and commu-
nicates using at least some on-die connections between cores
located on the same die. Accordingly, it should be appreciated
aspects of the present invention applies not only to processors
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and multiple processors but also to single core and multicore
computer processor implementations.

Generally, a computer will include one or more mass stor-
age devices for storing data files; such devices include mag-
netic disks, such as internal hard disks and removable disks;
magneto-optical disks; and optical disks. Storage devices
suitable for tangibly embodying computer program instruc-
tions and data include all forms of nonvolatile memory,
including by way of example semiconductor memory
devices, such as EPROM, EEPROM, and flash memory
devices; magnetic disks such as internal hard disks and
removable disks; magneto-optical disks; and CD-ROM disks.
Any of the foregoing can be supplemented by, or incorporated
in, ASICs.

While specific implementations have been described
herein for purposes of illustration, various modifications may
be made without departing from the spirit and scope of the
invention. Accordingly, the invention is not limited to the
above-described implementations, but instead is defined by
the appended claims in light of their full scope of equivalents.
For example, an example set of domains is provided that
include filesystem, network, storage, RAID, Exempt and idle
but it is contemplated that many other combination of
domains may be created for scheduling tasks and execution of
processes. Likewise, the Exclusion matrix also referenced
filesystem, network, storage, RAID however it is contem-
plated that the Exclusion matrix E[ ] [ ] may be constructed
from any combination of domains appropriate for the particu-
lar implementation. Furthermore, an example cost function
C[ ]is provided as an example however aspects of the present
invention may include this cost function CJ[ | as well as many
other cost functions consistent with the teachings and sug-
gestions of the present invention. This description of the
invention should be understood to include all novel and non-
obvious combinations of elements described herein, and
claims may be presented in this or a later application to any
novel and non-obvious combination of these elements. The
foregoing implementations are illustrative, and no single fea-
ture or element is essential to all possible combinations that
may be claimed in this or a later application. Unless otherwise
specified, steps of a method claim need not be performed in
the order specified. The invention is not limited to the above-
described implementations, but instead is defined by the
appended claims in light of their full scope of equivalents.
Where the claims recite “a” or “a first” element of the equiva-
lent thereof, such claims should be understood to include
incorporation of one or more such elements, neither requiring
nor excluding two or more such elements.

What is claimed is:

1. A method of scheduling processes, comprising:

dividing at a scheduler computing device processes from a
received request into a set of domains where processes in
the same domain are executable in a serial manner on at
least one of a plurality of processors without conflict;

identifying at the scheduler computing device a relative
processor utilization for each domain from the set of the
domains for the request based upon a workload corre-
sponding to a prior execution of a corresponding
request;

provisioning at the scheduler computing device a subset of
the plurality of processors to fulfill an aggregate proces-
sor utilization based on the identified relative processor
utilization for each domain from the set of domains; and

shutting down at the scheduler computing device any
remaining processors from plurality of processors not
provisioned in the subset of available processors.
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2. The method of claim 1 further comprising:

bringing online at the scheduler computing device any
processors from the plurality of processors that have
been provisioned in the subset of available processors
but previously shutdown to reduce power consumption.

3. The method of claim 1 further comprising:

assigning at the scheduler computing device a base cost to

each domain corresponding to the relative processor
utilization for each domain; and

scheduling at the scheduler computing device the pro-

cesses from each domain to the subset of available pro-
cessors for subsequent execution based on the base cost
assigned to each domain.

4. The method of claim 1 wherein the request concerns
operations to be performed on a storage system having a
multiple core processor with at least two processor cores.

5. The method of claim 1 wherein the processes can be
executed on the plurality of processors without the use of
fine-grained locking mechanisms.

6. The method of claim 3 wherein the relative processor
utilization for each domain is determined by analyzing entries
in a log created while executing a workload associated with
the corresponding request.

7. The method of claim 1 wherein the relative processor
utilization for each domain is recalculated after a predeter-
mined period of time has passed to reflect a change in the
workload with respect to the request.

8. The method of claim 3 wherein assigning the cost further
comprises:

receiving at the scheduler computing device the request

and corresponding set of processes divided into one or
more domains according to a function associated with
each process;

assigning at the scheduler computing device the base cost

to execute each domain corresponding to a relative pro-
cessor utilization from the one or more processes in each
domain;

increasing at the scheduler computing device the base cost

to execute each domain when execution of at least one
process in each domain may conflict with execution of at
least one process in another domain; and

reducing at the scheduler computing device the base cost

for each domain according to an amount of parallel
processing possible on two or more processors in each
domain.

9. The method of claim 7 wherein an exclusion matrix
indicates whether a process in one domain may have a conflict
executing in conjunction with a process in another domain.

10. A scheduling apparatus, comprising:

a processor that executes instructions;

a memory containing instructions when executed on the

processor that cause the apparatus to,

divide processes from a received request into a set of
domains where processes in the same domain are
executable in a serial manner on at least one of a
plurality of processor without conflict;

identify a relative processor utilization for each domain
from the set of the domains for the request based upon
a workload corresponding to a prior execution of a
corresponding request;
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provision a subset of the plurality of processors to fulfill
an aggregate processor utilization based on the iden-
tified relative processor utilization for each domain
from the set of domains; and

shut down any remaining processors from the plurality
of processors not provisioned in the subset of avail-
able processors.

11. The apparatus of claim 10 further comprising instruc-
tions when executed on the processor that,

bring online any processors from the one or more proces-

sors that have been provisioned in the subset of available
processors but previously shutdown to reduce power
consumption.
12. The apparatus of claim 10 further comprising instruc-
tions when executed on the processor that,
assign a base cost in each domain corresponding to a rela-
tive processor utilization in each domain that increases
when at least one process in a selected domain cannot
execute in conjunction with processes from another
domain due to conflicts,
schedule at least one process from a more costly domain to
one or more processors for subsequent execution and

schedule at least one process selected from a set of lower
cost domains to one or more processors for execution
that will be subsequent to the at least one process from
the more costly domain.

13. The apparatus of claim 10 wherein the request concerns
operations to be performed on a storage system having a
multiple core processor with at least two processor cores.

14. The apparatus of claim 10 wherein the processes can be
executed on the plurality of processors without the use of
fine-grained locking mechanisms.

15. The apparatus of claim 12 wherein the relative proces-
sor utilization for each domain is determined by analyzing
entries in a log created while executing a workload associated
with the corresponding request.

16. The apparatus of claim 10 wherein the relative proces-
sor utilization for each domain is recalculated after a prede-
termined period of time has passed to reflect a change in the
workload with respect to the request.

17. The apparatus of claim 12 wherein assigning the cost
further comprises instructions when executed that cause the
processor to,

receive the request and corresponding set of processes

divided into one or more domains according to a func-
tion associated with each process,

assign the base cost to execute each domain corresponding

to a relative processor utilization from the one or more
processes in each domain,

increase the base cost to execute each domain when execu-

tion of at least one process in each domain may conflict
with execution of at least one process in another domain,
and

reduce the base cost for each domain according to an

amount of parallel processing possible on two or more
processors in each domain.

18. The apparatus of claim 16 wherein an exclusion matrix
indicates whether a process in one domain may have a conflict
executing in conjunction with a process in another domain.

#* #* #* #* #*



